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ABSTRACT

miRBase catalogs, names and distributes microRNA
gene sequences. The latest release of miRBase (v22)
contains microRNA sequences from 271 organisms:
38 589 hairpin precursors and 48 860 mature microR-
NAs. We describe improvements to the database and
website to provide more information about the qual-
ity of microRNA gene annotations, and the cellular
functions of their products. We have collected 1493
small RNA deep sequencing datasets and mapped a
total of 5.5 billion reads to microRNA sequences. The
read mapping patterns provide strong support for the
validity of between 20% and 65% of microRNA an-
notations in different well-studied animal genomes,
and evidence for the removal of >200 sequences
from the database. To improve the availability of mi-
croRNA functional information, we are disseminating
Gene Ontology terms annotated against miRBase se-
quences. We have also used a text-mining approach
to search for microRNA gene names in the full-text of
open access articles. Over 500 000 sentences from
18 542 papers contain microRNA names. We score
these sentences for functional information and link
them with 12 519 microRNA entries. The sentences
themselves, and word clouds built from them, pro-
vide effective summaries of the functional informa-
tion about specific microRNAs. miRBase is publicly
and freely available at http://mirbase.org/.

INTRODUCTION

miRBase is the primary public repository and online re-
source for microRNA sequences and annotation (http:
//mirbase.org/). Established in 2002 (then called the mi-
croRNA Registry), miRBase is responsible for microRNA
gene nomenclature and has been assigning gene names
for novel microRNA discoveries since that time. The mi-
croRNA gene naming scheme has been discussed in pre-
vious miRBase publications (1–5), and on the miRBase
blog (http://mirbase.org/blog/). The miRBase website pro-
vides a wide-range of information on published microR-

NAs, including their sequences, their biogenesis precursors,
genome coordinates and context, literature references, deep
sequencing expression data and community-driven annota-
tion. miRBase also acts as a portal for third party informa-
tion about microRNA genes and sequence, linking out to
other resources such as those that include predicted and ex-
perimentally validated targets of microRNAs.

The latest release of the miRBase database (v22) con-
tains 38 589 entries representing hairpin precursor microR-
NAs, from 271 organisms. This represents an increase in
sequences of more than a third over the previous release.
Those hairpin precursors produce a total of 48 860 different
mature microRNA sequences. Vertebrate genomes contain
thousands of microRNAs: for example, the human genome
contains 1917 annotated hairpin precursors, and 2654 ma-
ture sequences. Well-annotated genomes of both inverte-
brates and plants contain hundreds of microRNAs (for ex-
ample, Drosophila melanogaster: 258 hairpins, 469 mature
sequences; Caenorhabditis elegans: 253 hairpins, 437 mature
sequences; Arabidopsis thaliana: 326 hairpins, 428 mature
sequences).

We discuss here recent advances and updates to the miR-
Base database, focusing on efforts to provide the user with
more information about the quality of microRNA annota-
tions, and the biological function of microRNA sequences.

QUALITY OF microRNA ANNOTATIONS

The primary source of sequence data in miRBase is au-
thor submission. The overwhelming majority of microR-
NAs are discovered by small RNA deep sequencing ap-
proaches. As the number and depth of sequencing exper-
iments has increased, microRNAs expressed at ever-lower
abundance and with ever-more specific expression patterns
have been annotated and submitted to miRBase. The num-
ber of researchers engaged in microRNA discovery has
also increased, and the stringency of the criteria used by
authors to annotate microRNAs has become more vari-
able. It is therefore more and more challenging to distin-
guish bona fide microRNAs from mis-annotated fragments
of other RNA species, for example. The variable quality of
microRNA annotations has been discussed in the literature
(see e.g. (6–10)), and concerns over annotation quality are
of course of critical interest to the microRNA community.
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It is important to note that miRBase provides only mini-
mal gate-keeping for quality of microRNA annotation at
the point of submission. Rather, the responsibility for accu-
racy falls on submitting authors, and reviewers and editors
of publications. miRBase aims to provide post hoc analy-
ses of published microRNA sequences, such that users can
assess annotation quality and select the subset of data that
best matches their requirements. These analyses also trigger
manual review of dubious annotations, which may lead to
removal of sequences from the database. Website searches
for obsolete microRNA names return the last version of the
entry, and a clear reason for its removal.

Small RNA deep sequencing datasets, deposited in public
databases of sequencing data such as SRA and GEO, con-
tain enormous quantities of information about microRNA
expression and biogenesis in many organisms, across devel-
opmental time, in different tissues, and in response to differ-
ent external factors. The metadata deposited with RNAseq
experiments does not always make it straightforward to dis-
tinguish small RNA deep sequencing datasets from whole
transcriptome sets, but at the time of writing, querying the
SRA database for datasets with the strategy ‘miRNA-seq’
returns 33,691 results. Around 14 000 of those datasets are
from human, 5000 from mouse, 600 from A. thaliana, 500
from D. melanogaster and 300 from C. elegans.

Since 2010, miRBase has been collecting small RNA
deep sequencing datasets, mapping reads to microRNA se-
quences, and showing the read mapping profiles on the
website. These views have been extremely useful for exam-
ining the expression profiles of microRNAs. The canoni-
cal mechanism of microRNA processing by Drosha and
Dicer proteins leads to a very specific pattern of short reads
mapped across a true microRNA locus, as discussed previ-
ously (1,2,11). For example, bona fide microRNA genes are
expected to have reads mapping to both arms of the hair-
pin precursor, mature microRNAs from the two arms are
expected to form a duplex with 2 nt 3′ overhangs, and the 5′
end of each mature microRNA is expected to be processed
with high consistency (1,11). We have separated out a subset
of microRNAs that we designate as ‘high confidence’ based
on support from the read data (1). A small number of se-
quences have mapped read patterns that are not consistent
with their annotation as a microRNA, and we have been
removing these entries from miRBase – 87 sequences were
removed between releases 21 and 22. However, for ∼90% of
microRNA annotations across the whole database, we have
previously been unable to assess the confidence in their an-
notation due to lack of read data. Even in important animal
model organisms (human, mouse, D. melanogaster, C. ele-
gans), we had not collated enough read data to support or
refute the validity of between 30% and 70% of microRNA
annotations.

We are addressing this problem by increasing the num-
ber of datasets that we are mapping to miRBase microRNA
sequences, from 426 in release 21 to 1493 in release 22. In
total, these datasets contain 5.5 billion reads that map to
microRNA loci, a 5-fold increase over the previous release.
This increased coverage allows us to re-calibrate the criteria
that we are using to call ‘high confidence’ microRNAs, and
re-calculate that dataset. The criteria we are currently using
are:

• The microRNA hairpin has mature microRNA se-
quences annotated from both arms.

• The duplex of mature microRNAs exhibits a 3′ overhang
of 0–4 nt.

• Each mature microRNA has ≥20 overlapping reads.
• ≥50% of the reads mapping to each mature microRNA

have the same 5′ end.

Despite the increased stringency of these rules (we previ-
ously required only 10 reads per arm), the proportion of
microRNA annotations that are classified as ‘high confi-
dence’ in many well-studied organisms has increased (see
Figure 1). For example, 26% of human microRNA annota-
tions are classified as ‘high confidence’ in miRBase 22, com-
pared with only 16% in miRBase 21.

As previously, it is important to note that the main reason
that microRNAs are not classified as ‘high confidence’ is
lack of data. For example, 1225 human microRNAs (64%)
do not have ≥20 reads associated with each arm in the
datasets that we have collected. Lack of data is not suffi-
cient to assert that these microRNAs are not valid annota-
tions. However, some microRNA annotations have lots of
mapped reads, but the pattern of those reads does not sup-
port the processing of a microRNA by Drosha and Dicer.
We have therefore introduced a ‘low confidence’ classifica-
tion, currently defined using the following rules:

• More than 100 reads map across the microRNA hairpin
locus.

• <30% of reads mapping to the more abundant arm of the
hairpin have the same 5′ end.

A total of 245 annotations are currently flagged as ‘low
confidence’ in the database, including 17 human entries. We
are in the process of manually reviewing each one, and re-
moving from miRBase where appropriate.

We previously introduced a simple voting feature, allow-
ing miRBase users to vote for or against the validity of any
given microRNA annotation (1). This feature has been well-
used: over 13 000 votes have been cast across over 4000 dif-
ferent microRNA sequences from 199 species. For exam-
ple, in human, 7644 votes are registered against 1195 of the
1917 sequences (62%). In total, 725 microRNA sequences
have an overall negative voting score. 208 of those negative
scores are human sequences, and 19 of those have a score of
–5 or less. We have already used these data to highlight se-
quences for review, and as a result have removed members of
the mir-566, mir-1273, mir-4419 and mir-6723 families from
the database. 10 additional families highlighted in this way
are flagged for future removal. These growing data supple-
ment our automated confidence assignments, and the visual
representations of read data, to allow users to quickly judge
the quality of any microRNA annotation in miRBase.

BIOLOGICAL FUNCTIONS OF microRNAs

The spatial and temporal expression of microRNAs in-
ferred from deep sequencing datasets gives clues to their
function. For example, mouse mir-1 family members have
well-described roles in muscle development (12,13), and
the read data shown for mmu-mir-1a-1 in miRBase clearly
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Figure 1. The proportion of microRNA sequences annotated as high confidence in release 22 (black) and release 21 (grey). All species with 30 or more small
RNA deep sequencing datasets in miRBase 22 are shown. Species abbreviations: dre: Danio rerio; rno: Rattus norvegicus; dme: Drosophila melanogaster;
cel: Caenorhabditis elegans; mmu: Mus musculus, zma: Zea mays; hsa: Homo sapiens; bta: Bos taurus; tae: Triticum aestivum.

shows its high expression in both cardiac and skeletal mus-
cle.

However, extensive functional annotation of microRNAs
has generally been lacking in miRBase. For example, the
scientific articles cited for each microRNA entry generally
refer to the microRNA discovery, rather than to function.
Information about the functional roles of microRNAs is
available elsewhere in a variety of forms. For example, there
are a number of well-established and well-used databases of
both predicted and validated microRNA targets. For exam-
ple, TargetScan (14), DIANA-microT (15) and miRDB (16)
are amongst many resources that provide web interfaces to
search and view the predicted target sites of most microR-
NAs. These resources often update their predictions in line
with new microRNA releases through miRBase. The Tar-
Base (17) and miRTarBase (18) databases curate and pro-
vide lists of microRNA targets that have some experimen-
tal support. miRBase does not curate or collate predicted
or validated target sets, but rather links from entries to ex-
ternal target resources. We have worked to improve and in-
crease these links from miRBase. Over a fifth of mature mi-
croRNAs (10 609/48 860) in miRBase have links to target
predictions, and 4154 (8.5%) link out to validated target
sets. Those proportions are much higher for the best-studied
and most viewed organisms – for example 2578 and 2599 of
the 2654 human mature sequences in miRBase have links to
predicted and validated targets respectively.

Gene Ontology

An enormous quantity of functional information is locked
up in the scientific literature. As of Sept 2018, over 80 000 ar-
ticles in PubMed contain the term ‘microRNA’ or ‘miRNA’
in the title, keyword or abstract, including 13 726 published
in 2017. Extracting biological information from these pa-

pers in any kind of structured way is difficult and time-
consuming.

The Gene Ontology (GO) provides a controlled and flex-
ible structure by which functional information can be at-
tached to genes (19,20). The widespread assignment of GO
terms to protein-coding genes has been one of the success
stories of bioinformatics and genomics, driven by the adop-
tion of GO as a standard amongst model organism and
genome browser resources, and enormous annotation ef-
forts by the GO Consortium (20). The manual curation of
terms for a given gene involves an expert biocurator read-
ing scientific papers, extracting and interpreting statements
related to the function of the gene of interest, and attach-
ing that information to the gene in the form of terms from
the structured ontology. However, until recently, there had
been little coordinated effort to annotate GO terms to non-
protein-coding genes. These data have not therefore been
widely available in bioinformatics databases or resources.

Recently, the UCL Functional Gene Annotation team
has embarked on an effort to annotate microRNAs with
GO terms (21,22). In total, the team have annotated over
500 mature microRNAs from human, mouse and rat with
nearly 5000 GO terms, over 3000 of which are linked with
human microRNAs (22). They have also annotated infor-
mation on ∼2500 experimentally-validated targets of ma-
ture microRNAs. These datasets of microRNA GO anno-
tations, together with annotations that are starting to be
deposited by resources such as MGI (23) and RNAcen-
tral (24), are made available through the QuickGO resource
at EBI (25). RNA genes in QuickGO are identified using
sequence identifiers from the RNAcentral database. Using
the EBI webservices and an RNAcentral-provided map-
ping from miRBase accessions to RNAcentral identifiers,
we are able to extract the set of GO annotations associ-
ated with any miRBase entry, for display on the miRBase
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Table 1. Gene Ontology annotations for hsa-miR-499a-5p

Qualifier GO term Evidence Notes Reference

involved in GO:0014883
transition between fast
and slow fiber

ECO:0000250
sequence similarity
evidence used in manual
assertion

occurs in
UBERON:0001389
soleus muscle

GO REF:0000024
Manual transfer of
experimentally-verified
manual GO annotation data
to orthologs by curator
judgment of sequence
similarity

involved in GO:0035195
gene silencing by miRNA

ECO:0000314
direct assay evidence used
in manual assertion

regulates expression of
ENSG00000110693
SOX6
occurs in
CL:0010021
cardiac myoblast
regulates
GO:0055007
cardiac muscle cell
differentiation

PMID:20081117

involved in GO:0035195
gene silencing by miRNA

ECO:0000314
direct assay evidence used
in manual assertion

regulates expression of
ENSG00000143603
KCNN3

PMID:23499625

involved in GO:2000727
positive regulation of
cardiac muscle cell
differentiation

ECO:0000314
direct assay evidence used
in manual assertion

- PMID:20081117

involved in GO:2000818
negative regulation of
myoblast proliferation

ECO:0000314
direct assay evidence used
in manual assertion

results in division of
CL:0010021
cardiac myoblast

PMID:20081117

enables GO:1903231
mRNA binding involved
in posttranscriptional gene
silencing

ECO:0000314
direct assay evidence used
in manual assertion

has direct input
ENSG00000110693
SOX6

PMID:20081117

enables GO:1903231
mRNA binding involved
in posttranscriptional gene
silencing

ECO:0000314
direct assay evidence used
in manual assertion

has direct input
ENSG00000143603
KCNN3

PMID:23499625

Table 2. The top 10 ranked articles for hsa-mir-21, the number of sentences associated with the microRNA name, and other human microRNAs associated
with the paper

Pubmed ID Article title Sentences Other human miRNAs

22685542 MicroRNA-21 governs TORC1 activation in renal cancer cell
proliferation and invasion

224 –

26975392 Relevance of miR-21 in regulation of tumor suppressor gene
PTEN in human cervical cancer cells

145 let-7a-1, let-7a-2, let-7a-3,
mir-214

20113523 MicroRNA-21 inhibitor sensitizes human glioblastoma cells
U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

116 mir-221, mir-222, mir-328,
mir-451a, mir-451b

25058005 Alteration in Mir-21/PTEN expression modulates gefitinib
resistance in non-small cell lung cancer

109 mir-181b-1, mir-181b-2,
mir-214,

26160841 Inhibition of miR-21 restores RANKL/OPG ratio in multiple
myeloma-derived bone marrow stromal cells and impairs the
resorbing activity of mature osteoclasts

114 mir-29b-1, mir-29b-2,
mir-34a, mir-221, mir-222,
mir-9718

22931209 miRNA-21 is developmentally regulated in mouse brain and is
co-expressed with SOX2 in glioma

119 mir-16-1, mir-16-2,
mir-29a, mir-29b-1,
mir-29b-2

23717555 4-HNE increases intracellular ADMA levels in cultured
HUVECs: evidence for miR-21-dependent mechanisms

97 -

21544242 MiR-21 induced angiogenesis through AKT and ERK activation
and HIF-1� expression

81 let-7#, mir-27b, mir-130a,
mir-126, mir-296,
mir-378#

23082189 Mechanical stretch modulates microRNA 21 expression,
participating in proliferation and apoptosis in cultured human
aortic smooth muscle cells

93 mir-19a, mir-23b,
mir-26a-1, mir-26a-2

23991015 MicroRNA-21 in pancreatic ductal adenocarcinoma
tumor-associated fibroblasts promotes metastasis

113 mir-122

#All family members are associated with the article.
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Figure 2. MicroRNA functional information mined from open access papers. (A) The top 20 species according to the number of open access papers
associated with their microRNAs. (B) The proportion of microRNAs from selected model organisms that have papers and sentences associated. (C) Word
cloud for Drosophila melanogaster bantam microRNA. (D) Word cloud for hsa-mir-133a-2. Species abbreviations: hsa: Homo sapiens, mmu: Mus musculus,
rno: Rattus norvegicus; dme: Drosophila melanogaster; ath: Arabidopsis thaliana; osa: Oryza sativa; dre: Danio rerio; bta: Bos taurus; gga: Gallus gallus; cel:
Caenorhabditis elegans; ssc: Sus scrofa; zma: Zea mays; sly: Solanum lycopersicum; tae: Triticum aestivum; gma: Glycine max; oar: Ovis aries; ghr: Gossypium
hirsutum; hvu: Hordeum vulgare; ocu: Oryctolagus cuniculus; chi: Capra hircus.

entry pages. Table 1 shows an example set of annotations
for the hsa-miR-499a-5p mature microRNA. The annota-
tions show that the microRNA directly regulates the genes
SOX6 and KCNN3, and has a role in cardiac muscle cell dif-
ferentiation (26,27). These high-value manually-annotated
datasets complement the more extensive automated target
prediction and validation datasets discussed above.

Mining the scientific literature for microRNA function

The manual curation of information from the scientific liter-
ature provides gold-standard quality functional annotation
(22). However, this work is obviously enormously labour-
intensive, and as a result, less than 10% of mature miRNA
sequences in human, mouse and rat currently have this level

of information. It is therefore useful to supplement such ef-
forts with automated text-mining approaches. Automated
extraction of functional annotation is difficult. Recogniz-
ing gene names, or even species names, in full-text articles is
surprisingly challenging (28–30). For example, many gene
names are common English words, a problem that is par-
ticularly acute in species such as D. melanogaster. However,
with just a handful of exceptions, microRNA gene names,
as assigned by miRBase, have been standardized in format
in the scientific literature since 2002. Almost all microRNA
gene names are therefore unambiguous and straightforward
to recognize automatically in full-text searches.

We have adopted the following procedure to mine the
scientific literature for functional information about mi-
croRNAs. We have downloaded the PubMed Central open
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access corpus of literature (ftp://ftp.ncbi.nlm.nih.gov/pub/
pmc/oa bulk/; 21 July 2018). Initially, we are working with
the for-commercial-use subset, containing 1 252 865 full-
text articles, but will be extending the analysis to include
the non-commercial-use dataset. The Organisms database
(https://organisms.jensenlab.org/; 21 July 2018) was used
to associate each full-text article with a list of organisms
(30). Text from the abstract, introduction, results and dis-
cussion sections was extracted from the XML file for each
publication and split into sentences using the python li-
brary ntlk.tokenize (v.3.3). Each sentence was then searched
for microRNA gene name mentions using regular expres-
sions (including ‘miR-#’, ‘miRNA-#’, ‘microRNA-#‘ and
the exceptional microRNA names let-7, lin-4, bantam, etc).
18 542 of the articles analysed (1.48%) contain a microRNA
gene name. The top 20 species with which articles mention-
ing microRNA gene names have been associated are shown
in Figure 2A.

To separate real sentences from extracts of tables and
references, sentences containing >25 different microRNA
gene names or >200 words in total were eliminated. The re-
maining sentences containing microRNA gene names were
then associated with the species identified for that paper in
the Organisms database. There are two obvious sources of
mis-assignment of papers to microRNA genes in a specific
organism:

• Many papers are associated with more than one species.
Sentences not containing the name of the species for a
given microRNA, but containing names or abbreviations
of names of other species, were therefore excluded. How-
ever, if a sentence contains no species name or abbrevi-
ation, we cannot tell whether the microRNA gene name
refers to one or all of the species linked with the paper. In
these cases, we currently assign the paper and sentences
to all associated species.

• Many microRNA mentions in papers are at the gene fam-
ily level. Where we cannot tell which family member a
sentence refers to, we assign the paper and sentence to
all family members in the relevant organism. For exam-
ple, the term ‘let-7’ in a paper associated with the species
Homo sapiens causes the sentence to be associated with
all 11 human let-7 family members.

We have used a simple scoring scheme to rank microRNA
name-containing sentences according to the inclusion of
possible functional terms. Keywords related to microRNA
function (e.g. ‘expression’, ‘target’, ‘regulate’, ‘inhibit’) con-
tribute a positive score, while negative scores are triggered
by keywords linked to measurements, calculations or exper-
imental approaches. The term list will be constantly refined
to generate the most useful sentence ranking. The papers
associated with a microRNA are ranked according to the
sum of the sentence scores.

After filtering, a total of 554 287 sentences have been as-
sociated with 12 519 microRNAs. The proportion of mi-
croRNA genes that have papers and sentences associated
varies across the well-studied model organisms (see Fig-
ure 2B). For example, 73% of human microRNA genes
(1401/1917) have associated papers and sentences. The gene
hsa-mir-21 has the largest number of linked papers: 1559,

with 16 584 sentences mentioning the microRNA. Titles of
the top 10 articles by summed sentence score for hsa-mir-21
are shown in Table 2.

We have built word cloud representations of the complete
set of sentences associated with each microRNA, using the
R packages tm and wordcloud. The tm package is used to
remove English language stop words, and common scien-
tific terms that obscure the more useful functional informa-
tion are also curated and removed (e.g. ‘expressed’, ‘cell’,
‘sequence’, ‘gene’). Two example word clouds are shown in
Figure 2. These images give an immediate visual summary
of the keywords associated with a given microRNA. For ex-
ample, the D. melanogaster bantam word cloud (Figure 2C)
is built from 712 sentences from 108 open access papers. The
word cloud highlights a number of terms related to its role
in regulating the neural stem cell proliferation, its key apop-
totic target gene hid, and its links with the hippo pathway
(31–33). The word cloud built from 1750 sentences from 381
papers linked to the microRNA hsa-mir-133a-2 (Figure 2D)
clearly highlights the known roles of mir-133 genes in both
cardiac and skeletal muscle development (34,35). It also
shows that mir-133 co-occurs in sentences with other mi-
croRNAs, including mir-206 and mir-499, both of which are
known to regulate cardiac muscle differentiation (35,36).

A new interface to the papers and sentences associated
with each microRNA has been built for the miRBase web-
site. These pages and the associated word clouds are promi-
nently linked from each microRNA entry page. Currently,
we show word clouds only for microRNAs that have 10 or
more associated sentences. We hope that this interface pro-
vides an efficient and useful first view of the functional roles
of a microRNA, and an easy way to identify and access the
most informative scientific articles about microRNA func-
tion for deeper exploration. For example, we envisage that
this interface will be useful for fast identification of inter-
esting microRNAs from a list of candidates resulting from
a differential expression experiment. We also hope that it
will prove a useful tool for expert biocurators who produce
gold-standard functional annotation datasets (see above),
helping them to quickly access the most useful articles.

FUTURE DEVELOPMENTS

The three datatypes described here––deep sequencing data,
GO annotations, and open access articles––are all expected
to grow rapidly. Despite our focus on increasing the cover-
age of small RNA deep sequencing datasets represented in
miRBase, we have only collected around 5% of the available
data. We will therefore prioritise identifying and incorporat-
ing those datasets that will help us to assess the validity of
the widest set of miRBase entries. For the GO annotations,
the use of QuickGO webservices to build the available data
into miRBase web pages means that new annotations and
edits will be visible in miRBase as they are made. We will
also update our analysis of open access papers, including
the non-commercial-use dataset, and new papers as they are
published.

We are particularly keen to further develop the text-
mining approaches to extract functional information. The
sentence-scoring scheme will be continuously adapted and
improved to rank sentences and papers in the most useful

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/
https://organisms.jensenlab.org/
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way. However, no automated scoring function will match a
biologist’s ability to assess the usefulness of a given sentence
or paper. We are therefore considering integrating a com-
munity feedback feature into the sentence scoring. For ex-
ample, users of miRBase could vote sentences up and down
according to the quality of biological information they pro-
vide.

DATA AVAILABILITY

All miRBase data are publicly and freely available un-
der the Creative Commons Zero license. Data are avail-
able for bulk download from ftp://mirbase.org/ and on
the web at http://mirbase.org/. Feedback on any aspect
of the miRBase database, and discussion of novel mi-
croRNA sequence names, are welcome by email to mir-
base@manchester.ac.uk.
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